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Abstract
The development of clinical prediction models requires the selection of suitable pre-

dictor variables. Techniques to perform objective Bayesian variable selection in the

linear model are well developed and have been extended to the generalized linear

model setting as well as to the Cox proportional hazards model. Here, we consider

discrete time-to-event data with competing risks and propose methodology to develop

a clinical prediction model for the daily risk of acquiring a ventilator-associated pneu-

monia (VAP) attributed to P. aeruginosa (PA) in intensive care units. The competing

events for a PA VAP are extubation, death, and VAP due to other bacteria. Baseline

variables are potentially important to predict the outcome at the start of ventilation,

but may lose some of their predictive power after a certain time. Therefore, we use

a landmark approach for dynamic Bayesian variable selection where the set of rele-

vant predictors depends on the time already spent at risk. We finally determine the

direct impact of a variable on each competing event through cause-specific variable

selection.

K E Y W O R D S
cause-specific variable selection, Bayesian variable selection, competing events, discrete time-to-event
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1 INTRODUCTION

Ventilator-associated pneumonia (VAP) is the leading nosocomial infection in critically ill ventilated patients treated in an

intensive care unit (ICU) and P. aeruginosa (PA) is the most common organism associated with VAPs (Hunter, 2012). We

are interested in the time until a first occurrence of a VAP attributed to PA. However, once ventilator-assisted patients are

extubated or dead they are not at risk for a VAP PA anymore. Furthermore, the occurrence of a VAP PA and a VAP attributed

to a different bacterium (VAP noPA) are mutually exclusive events. We are thus in the presence of competing risks. Data

records on VAP acquisition in intensive care units (ICUs) are usually given on a daily basis. In such situations, discrete-time

methods for the analysis of event history data (Allison, 1982; Efron, 1988; Singer & Willett, 1993) are a natural choice and

equivalent to continuous time-methods (D'Agostino et al., 1990). Further these methods can be easily extended to competing

events (Barnett & Graves, 2008; Barnett et al., 2009) for which the discrete cause-specific hazard function can be estimated using

multinomial regression models with a time-dependent intercept (Tutz, 1995). In addition, lagged time-dependent variables are

straightforward to incorporate; no additional reformatting of the data is necessary as opposed to handling such variables with

continuous methods. In clinical prediction models, a treatment or a certain medical measurement may not have an immediate
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effect on the outcome on the same day but rather a delayed influence. It is then of interest to select the optimal lag for a time-

dependent variable.

Developing good prediction models by selecting the most relevant predictors is of central importance in clinical research

(Steyerberg, 2009). Objective Bayesian variable selection has been well developed for the normal linear model (Liang, Paulo,

Molina, Clyde, & Berger, 2008), the generalised linear model (Held, Sabanés Bové, & Gravestock, 2015) and the Cox model

(Held, Gravestock, & Sabanés Bové, 2016) for a single outcome. This methodology can easily be used to proceed to vari-

able selection in discrete-time models with a single outcome by allowing the reference or null model to account for the time-

dependency of the baseline hazard. However, these methods have not been developed for multiple outcomes. This article extends

the methodology to discrete time-to-event models with competing risks selecting predictors that are relevant for all outcomes

combined. However, Gustafson and Lefebvre (2008) argue that in many applications the subset of variables characterising a

specific cause, or event, will change from cause to cause. They conclude that class-specific predictor selection is more “scientifi-

cally plausible” than ordinary variable selection and propose a rather complex method based on a hierarchically structured prior

with a hyperparameter controlling the difference with ordinary predictor selection. We introduce a different, easily implemented,

method for cause-specific variable selection that detects the variables that are of importance for a specific cause and sets the

irrelevant coefficients to zero. Our approach is based on Bayes factors and closely related to standard Bayesian variable selec-

tion. Further, some variables may be more relevant for prediction during the early observation period whereas others may only

be important after some time has been spent at risk. Hence we construct dynamic prediction models by applying the proposed

variable selection methodology to landmark-specific data subsets. The landmarking approach has been introduced by Anderson,

Cain, and Gelber (1983) and used in the context of Bayesian variable selection by Held et al. (2016).

This paper is structured as follows: Section 2 first introduces the OUTCOMEREA database as well as our research question

that led to the development of the methods that will be discussed in this paper. Section 3 describes discrete time-to-event methods

for one event of interest, generalises the approach to the setting of multiple outcomes and explains how the regression coefficients

of these models can be estimated within the framework of multivariate generalized linear models. The procedure to develop a

clinical prediction model for discrete time competing risks data is introduced in Section 4. As a first step, we concentrate on the

selection of the baseline hazard in Section 4.1; then extend standard objective Bayesian variable selection methodology to our

type of models in Section 4.2. We present a method for cause-specific variable selection in Section 4.3. Section 4.4 explains how

a landmarking approach can be used to acquire dynamic prediction models. Section 4.5 illustrates how we can predict specific

events of interest using the selected prediction model for the hazard. We apply this methodology in Section 5 and close with

some discussion on the advantages and limitations of our method as well as possible ways to validate the prediction models in

Section 6.

2 THE OUTCOMEREA DATABASE

In this article, we work on the prospective multicenter observational database OUTCOMEREA; see Bekaert et al. (2011),

Bouadma et al. (2015), and Truche et al. (2016) for more information on the database as well as for a detailed definition of

VAP. Data collection started in January 1997 and is still ongoing. In our subset of the database we have information on patients

admitted to 32 French ICUs until August 2015. We excluded patients who were never ventilated as well as patients under 18 or

with missing birth date. In order to be at risk for a VAP, patients need to be ventilated for at least 48 hours; we excluded the ones

who were not from the analysis. Total of 7,319 patients were retained. Daily ICU records are available, so that the discrete time

units are days.

Extubation and death without VAP diagnosis and VAP due to a different pathogen than PA (VAP noPA) are considered to

be competing events for VAP PA. See Figure 1 of the Supplementary Material for a schematic representation of the setting.

Discharge of the ICU or the hospital does not figure on the list of competing events since a patient needs to be extubated prior to

leaving the ICU. To keep things as simple as possible we concentrate on the time until a first event occurs. So once the patient

is extubated or acquires a first VAP they are not modeled anymore. If a patient dies on the same day as a VAP is diagnosed we

take VAP as the final event since the main focus of our application is VAP acquisition. The time scale will be time since start of

ventilation, the observation period then starts on the first day of ventilation and ends with the occurrence of a first event.

In order to allow an intervention to take place we need to predict two days ahead such that patients at high risk of acquiring

a VAP PA in two days can be treated with, for example, specific antibiotics, today. Therefore, we predict the outcome at day

𝑡 + 2 using baseline as well as daily information. Furthermore, we decide to use time-dependent information lagged by up to

two days (𝑡 − 2, 𝑡 − 1, 𝑡). The choice to go back in time for at most two days allows us to use some data from the patient's

ventilation history without losing too much information from the early stages. However, this prevents us to predict very early
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T A B L E 1 Total number of distinct events. The patients are only analyzed until the occurrence of a first event

Dead Extubated VAP noPA VAP PA
Number of events 896 3,251 635 341

T A B L E 2 Potential predictors and their definition

Baseline variables
𝑥1 Patient type Admission type (1 = surgical, 0 = medical)

𝑥2 Gender Gender (1 = male, 0 = female)

𝑥3 Baseline SAPS2 Simplified Acute Physiology Score II at first day of admission (0–123)

𝑥4 Pneumonia at admission Admitted with a pneumonia (yes or no)

𝑥5 Sepsis at admission Sepsis at the admission to the ICU (yes or no)

𝑥6 Symptom ICU admission motif (main symptom): factor with 5 levels

1: Multiorgan failure—different shocks

2: Acute respiratory distress syndrome—COPD exacerbation

3: Acute renal failure

4: Coma

5: Continuous monitoring - Scheduled surgery—Trauma (= Reference category)

𝑥7 Diabetes Diabetes (yes or no)

𝑥8 Comorbidity At least one comorbidity (yes or no)

Time-dependent variables
𝑥9𝑡 Hemodialysis Usage of hemodialysis

𝑥10𝑡 Any catheter Presence of a catheter

𝑥11𝑡 SOFA Daily sequential organ failure assessment score (0–24)

𝑥12𝑡 AB against PA Use of at least one antibiotic (AB) against PA

Aminoglycosides / Penems / Fosfomycin / Ceftazidime

Fluoroquinolones / Ureido-carboxypenicillins / Cefpirome/cefepime

𝑥13𝑡 DNR Do not resuscitate

𝑥14𝑡 Multiresistant PA Colonization or infection with P. aeruginosa resistant to at least two molecules

out of the 3: ticarcillin, ceftazidime, or imipenem

onset infections (before the fifth day of ventilation) and we simply exclude patients ventilated less than five days from the

analysis. In the OUTCOMEREA data a total of 253 VAPs were diagnosed between day one and day four of ventilation among

which 47 where caused by PA.

For the proposed method, the dataset needs to be presented in a long data format where each row contains a day of observation,

here ventilation, of a specific patient. A patient is represented in the dataset by as many rows as they are ventilated. After applying

all the inclusion criteria we retain a total number of 64,164 ventilation-days for 5,123 distinct ICU stays. On average it takes

12.5 ventilation days for an event to occur. Table 1 gives the number of distinct events. None of the observations are censored;

all patients have had an event before end of August 2015. Table 2 lists the potential predictors for which data has been collected,

if applicable on a daily basis, and which are judged clinically relevant. The SAPS2 and SOFA scores have been validated to

predict hospital death in ICU patients (Le Gall et al., 1993; Timsit et al., 2002).

3 DISCRETE TIME-TO-EVENT METHODS

3.1 Modeling the discrete hazard function
Let the discrete random variable 𝑇 represent the event time for one event of interest, then, for a given vector of explanatory

variables 𝐱, an individual's discrete hazard at time 𝑡 is defined by

𝜆(𝑡 | 𝐱) = Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱), 𝑡 = 1, 2,… (1)
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Time-varying and lagged covariates can simply be included in (1)

𝜆(𝑡 | 𝐱𝑡) = Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡), 𝑡 = 1, 2,… (2)

where 𝐱𝑡 may comprise time-constant or (possibly lagged) time-dependent explanatory variables observed at time 𝑡. The discrete

hazard function can directly be interpreted as the conditional probability that the event of interest is observed at 𝑡 given the event

has not been observed before 𝑡 and given 𝐱𝑡. The discrete survival function is given by

𝑆(𝑡 | 𝐱𝑡) = Pr(𝑇 > 𝑡 | 𝐱𝑡) = 𝑡∏
𝑖=1

(1 − 𝜆(𝑖 | 𝐱𝑖)).
For a fixed 𝑡, the discrete hazard function models a binary response indicating whether an event took place exactly at time 𝑡 or

not:

𝜆(𝑡 | 𝐱𝑡) = ℎ(𝛽0𝑡 + 𝐱⊤
𝑡
𝜷). (3)

ℎ(⋅) is a strictly monotonically increasing response function and 𝑔 = ℎ−1 the link function. A complementary log-log (clog-log)

link leads to the “grouped proportional hazards model” that can be seen as a discretized version of Cox's proportional hazards

model (Tutz & Schmid, 2016, Chapter 3). 𝛽0𝑡 is the time-dependent intercept and 𝜷 is the vector of regression coefficients.

The main extension compared to standard binary regression is that the intercept 𝛽0𝑡 depends on time. Further information on

discrete-time survival methods can be found in Singer and Willett (1993) and Tutz and Schmid (2016).

3.2 Competing events models
In many applications, including the one presented in this paper, other events preclude the outcome of interest. Models dealing

with this kind of problem are called competing risks models (Wolkewitz et al., 2014). Suppose 𝑅 ∈ {1,… , 𝑚} denotes the

distinct (terminating) causes and let 𝑇 now be a discrete random variable representing the time until the occurrence of a first

event, then the discrete cause-specific hazard function for cause 𝑟 is

𝜆𝑟(𝑡 | 𝐱𝑡) = Pr(𝑇 = 𝑡, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡) =

= 𝑔−1(𝛽0𝑡𝑟 + 𝐱⊤
𝑡
𝜷𝑟), 𝑡 = 1, 2,… (4)

where 𝑔(⋅) is a specific link function, 𝛽0𝑡𝑟 represents the cause-specific time-dependent intercept and 𝜷𝑟 is the cause-specific

vector of coefficients. The overall hazard function is defined as follows:

𝜆(𝑡 | 𝐱𝑡) = Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡) =
𝑚∑
𝑟=1
𝜆𝑟(𝑡 | 𝐱𝑡). (5)

To deal with competing events, the most commonly used model is the multinomial logit model (Tutz, 1995). Using this model,

the discrete cause-specific hazard function for a specific event 𝑟 is defined by

𝜆𝑟(𝑡 | 𝐱𝑡) = exp(𝛽0𝑡𝑟 + 𝐱⊤
𝑡
𝜷𝑟)

1 +
∑𝑚
𝑖=1 exp(𝛽0𝑡𝑖 + 𝐱⊤

𝑡
𝜷 𝑖)
, for 𝑟 = 1,… , 𝑚, 𝑡 = 1, 2,… (6)

where 𝛽0𝑡𝑟 can be interpreted as the cause-specific baseline hazard. Note that a reference category (𝑅 = 0) needs to be defined,

meaning that there are actually 𝑚 + 1 different events. In most applications, this refers to “staying at risk,” with discrete hazard

function

𝜆0(𝑡 | 𝐱𝑡) = Pr(𝑇 > 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡) = 1 −
𝑚∑
𝑟=1
𝜆𝑟(𝑡 | 𝐱𝑡) = 1

1 +
∑𝑚
𝑖=1 exp(𝛽0𝑡𝑖 + 𝐱⊤

𝑡
𝜷 𝑖)
.

If 𝑝 variables are considered, 𝜷⊤
𝑟
= (𝛽𝑟1,… , 𝛽𝑟𝑝), we have

log
(
𝜆𝑟(𝑡 | 𝐱𝑡)
𝜆0(𝑡 | 𝐱𝑡)

)
= 𝛽0𝑡𝑟 + 𝐱⊤

𝑡
𝜷𝑟 = 𝜂𝑟𝑡 (7)
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𝜆𝑟(𝑡 | 𝐱𝑡)
𝜆0(𝑡 | 𝐱𝑡) = exp(𝛽0𝑡𝑟) ⋅ exp(𝛽𝑟1)𝑥1 … exp(𝛽𝑟𝑝)𝑥𝑝 . (8)

So, the linear predictor 𝜂𝑟𝑡 in (7) can be interpreted as the cause-specific log-odds. A one unit increase of the variable 𝑥𝑘 has a

multiplicative effect of size exp(𝛽𝑟𝑘) on the cause-specific odds (8) of the outcome 𝑟.

3.3 Maximum likelihood estimation under noninformative censoring
Time-to-event data are often subject to censoring; that is the event time 𝑇𝑖 is unknown for some patients 𝑖 ∈ {1,… , 𝑛}. It is

then only known that the event time 𝑇𝑖 exceeds the censoring time 𝐶𝑖. In practice the observed event times 𝑡𝑖 = min{𝑇𝑖, 𝐶𝑖},

𝑖 = 1,… , 𝑛 are reported together with censoring indicators

𝛿𝑖 =
{
1 𝑇𝑖 ≤ 𝐶𝑖
0 𝑇𝑖 > 𝐶𝑖

(9)

and the cause 𝑟𝑖 ∈ {0, 1,… , 𝑚} of the event, here 𝑟𝑖 = 0 if and only if 𝛿𝑖 = 0.

The likelihood contribution of patient 𝑖 is then (Möst, Pößnecker, & Tutz, 2016):

𝑖 = Pr(𝑇𝑖 = 𝑡𝑖, 𝑅𝑖 = 𝑟𝑖)𝛿𝑖 Pr(𝑇𝑖 > 𝑡𝑖)1−𝛿𝑖 Pr(𝐶𝑖 ≥ 𝑡𝑖)𝛿𝑖 Pr(𝐶𝑖 = 𝑡𝑖)1−𝛿𝑖 . (10)

Under the assumption of noninformative censoring, the censoring mechanism does not depend on the time-dependent covariate

vector 𝐱𝑖𝑠, 𝑠 = 1,… , 𝑡𝑖, and the factor Pr(𝐶𝑖 ≥ 𝑡𝑖)𝛿𝑖 Pr(𝐶𝑖 = 𝑡𝑖)1−𝛿𝑖 in (10) can be omitted:

𝑖 = Pr(𝑇𝑖 = 𝑡𝑖, 𝑅𝑖 = 𝑟𝑖 | 𝐱𝑖𝑡𝑖)𝛿𝑖 Pr(𝑇𝑖 > 𝑡𝑖 | 𝐱𝑖𝑡𝑖 )1−𝛿𝑖 =
= 𝜆𝑟𝑖(𝑡𝑖 | 𝐱𝑖𝑡𝑖 )𝛿𝑖 {1 − 𝜆(𝑡𝑖 | 𝐱𝑖𝑡𝑖 )}1−𝛿𝑖

𝑡𝑖−1∏
𝑠=1

{
1 − 𝜆(𝑠 | 𝐱𝑖𝑠)} . (11)

For each patient 𝑖 we now define 𝐲𝑖𝑠 = (𝑦𝑖𝑠0, 𝑦𝑖𝑠1,… , 𝑦𝑖𝑠𝑚) = (1, 0,… , 0) for all 𝑠 = 1,… , 𝑡𝑖 − 1. If the event 𝑟𝑖 is observed

for observation 𝑖 at time 𝑡𝑖 (so 𝛿𝑖 = 1), we define

𝐲𝑖𝑡𝑖 = (𝑦𝑖𝑡𝑖0, 𝑦𝑖𝑡𝑖1,… , 𝑦𝑖𝑡𝑖𝑚) = (0,… , 1,… , 0),

with 𝑦𝑖𝑡𝑖𝑟𝑖 = 1 and all other elements of 𝐲𝑖𝑡𝑖 set to zero. If the event 𝑟𝑖 is censored at time 𝑡𝑖 (so 𝑟𝑖 = 0 and 𝛿𝑖 = 0), we define

𝐲𝑖𝑡𝑖 = (𝑦𝑖𝑡𝑖0, 𝑦𝑖𝑡𝑖1,… , 𝑦𝑖𝑡𝑖𝑚) = (1, 0,… , 0).

Using these indicator variables 𝑦𝑖𝑠𝑟, 𝑠 = 1,… , 𝑡𝑖, 𝑟 = 0,… , 𝑚, Equation (11) can be rewritten with (5) as a product of multino-

mial likelihood contributions,

𝑖 =
𝑡𝑖∏
𝑠=1

{
𝑚∏
𝑟=1
𝜆𝑟(𝑠 | 𝐱𝑖𝑠)𝑦𝑖𝑠𝑟

}{
1 − 𝜆(𝑠 | 𝐱𝑖𝑠)}𝑦𝑖𝑠0 =

=
𝑡𝑖∏
𝑠=1

{
𝑚∏
𝑟=1
𝜆𝑟(𝑠 | 𝐱𝑖𝑠)𝑦𝑖𝑠𝑟

}{
1 −

𝑚∑
𝑟=1
𝜆𝑟(𝑠 | 𝐱𝑖𝑠)

}𝑦𝑖𝑠0

, (12)

and the total log-likelihood is
∑𝑛
𝑖=1 log𝑖. The number of multinomial contributions depends on the observed censoring pattern

and the event times.

4 DEVELOPMENT OF CLINICAL PREDICTION MODELS FOR DISCRETE
COMPETING RISKS DATA

We are considering discrete time-to-event models and need to account for the time-dependency of the cause-specific baseline

hazard 𝛽0𝑡𝑟 in Equation (4). A method to determine which time-specification best fits the data is discussed in Section 4.1. Then we
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aim to select relevant predictors for our model using objective Bayesian variable selection as presented in Section 4.2. Choosing

among baseline and time-dependent variables with different lags can result in a vast model space that needs to be considered

and drastically slows down the computation of crucial quantities. Therefore we decide to use a sequential approach by first

electing the best lags for the different time-dependent variables and then adding potential baseline predictors in the selection

process. To further improve the model we proceed to cause-specific variable selection (CSVS), explained in Section 4.3, by

dropping the outcome-specific coefficients that are not meaningful and correcting the relevant ones. In a last step, we repeat

the variable selection and the CSVS steps on landmark-specific datasets that are conditioned on the fact that patients are still at

risk at the landmark. Finally, we obtain dynamic prediction models for the timing of a VAP PA, see Section 4.4. The proposed

methodology is implemented in R in the package TBFmultinomial available from R-CRAN. A vignette is provided with the

package explaining its use. The multinom() function from the nnet package as well as the vglm() function from the VGAM
package can be used to fit multinomial regression models with time-dependent intercepts resulting in discrete-time competing

risks models.

4.1 Baseline hazard selection
A major difference between standard multinomial regression models and discrete time-to-event competing risks models is the

time-dependency of the intercept 𝛽0𝑡𝑟 in Equation (4). Let 𝑡 ∈ {1,… , 𝑞}, then, for a fixed cause 𝑟, the baseline hazard can directly

be represented by the parameters 𝛽01𝑟, 𝛽02𝑟,… , 𝛽0𝑞𝑟 attributing a different intercept for each 𝑡. So, if the number 𝑞 of distinct

discrete time points is large, the number of parameters will be large too. This is why Barnett et al. (2009) and Beyersmann,

Allignol, and Schumacher (2012, Chapter 7.3) suggest to include a variable for time as a factor for the first 𝑧 time points, with

𝑧 ≤ 𝑞 based on clinical knowledge and on the size of the dataset. Even though this approach is very easy to apply and to interpret

we still end up with a rather large number of unstable parameters, especially if a low number of events is observed at certain

points in time. Another method to account for the time-dependency of the baseline hazard would be to assume that the baseline

hazard is a smooth function of time (Tutz & Schmid, 2016, Chapter 5). To do so (Tutz & Schmid, 2016) use basis functions like

polynomial splines or B-splines. Alternatively, the hazard can also be specified as a linear function of time. In order to find out

which baseline hazard model fits our data best, we graphically compare the discrete cause-specific cumulative baseline hazard

𝐴0𝑡𝑟 =
∑𝑡
𝑠=1 𝛽0𝑠𝑟, 𝑡 = 1,… , 𝑞 fitted using different time-specifications to the cause-specific Nelson–Aalen (N-A) estimator:

𝐴̂0𝑡𝑟 =
𝑡∑
𝑠=1

number of observed type 𝑟 events at 𝑠

number of individuals at risk just prior to 𝑠
, 𝑡 = 1,… , 𝑞 ,

here 𝑡 are the distinct cause-specific event times. Then we select the time-specification whose cumulative baseline hazard is

closest to the Nelson–Aalen estimator. The N-A estimator has originally been defined for continuous time-to-event models. Its

definition is however directly translatable to the discrete setting.

4.2 Objective Bayesian variable selection for discrete competing risks models
Let us consider a specific discrete time-to-event competing risks model 𝑗 with linear predictor 𝜂𝑗𝑡𝑟 = 𝛽0𝑗𝑡𝑟 + 𝐱𝑇

𝑡
𝜷𝑗𝑟, with 𝑟 =

1,… , 𝑚, as described in Section 3.2. Suppose 𝜽𝑗𝑟 regroups the cause-specific time-dependent intercept 𝛽0𝑗𝑡𝑟 and the cause-

specific regression coefficients vector 𝜷𝑗𝑟 of 𝑗 . An additional class, 𝑟 = 0, is added to represent the reference category “staying

at risk” or in our application “staying ventilated.”

Bayesian model or variable selection is based on the posterior model probability (PMP) of a particular model 𝑗 with

parameters 𝜽𝑗𝑟:

Pr(𝑗 | data) =
p(data |𝑗) Pr(𝑗)∑

𝑘∈Δ
p(data |𝑘) Pr(𝑘)

, (13)

where p(data |𝑗) = ∫ p(data | 𝜽𝑗𝑟,𝑗) p(𝜽𝑗𝑟 |𝑗) d𝜽𝑗𝑟 is the marginal likelihood of 𝑗 , Pr(𝑗) its prior probability, Δ is

the model space containing all considered candidate models and “data” regroups the multinomial outcome variable as well as the

potential censoring indicator. As discussed in Section 3.3, the likelihood of a discrete competing risks model (with censoring) is

equivalent to the likelihood of a multinomial response model (see also Chapter 3 of Tutz and Schmid (2016) for single outcome

models). If an individual is censored they simply stay in the reference category (𝑟 = 0). Using this approach, the censoring

mechanism is accounted for in the multinomial observations 𝐲𝑖𝑡 in Equation (12) and so “data” in Equation (13) corresponds to
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these multinomial observations with 𝑚 + 1 levels. If the selection is made among 𝑝 variables Δ contains 2𝑝 models. 0 will be

the reference model; the simplest model without any of the 𝑝 potential predictors, but containing the time-dependent intercept

selected by the procedure described in Section 4.1. Most often 0 is the null model; in some situations however, we might want

to be able to specify variables that should be included by default. Pr(𝑗) can be a uniform prior, meaning that each candidate

model has the same probability a priori. In all that follows we however use a multiplicity-corrected model prior, where the

probability depends on the complexity of the model (Scott & Berger, 2010). If 𝑝𝑗 is the number of additional variables included

in 𝑗 (not yet present in 0), the multiplicity-corrected prior is defined as Pr(𝑗) =
1
𝑝+1

(
𝑝

𝑝𝑗

)−1
.

Once, the PMPs for all models in Δ are calculated, we compute the posterior inclusion probability (PIP) of the 𝑝 variables

𝑥𝑘, 𝑘 ∈ {1,… 𝑝}:

Pr(𝑥𝑘 ∈  | data) =
∑

𝑗∈Δ
Pr(𝑗 | data)𝟙[𝑥𝑘∈𝑗 ]. (14)

The PIPs are used to decide upon the inclusion of a variable as a predictor. Including only the variables with PIP ≥ 0.5 leads

to the median probability model (MPM) proven to be optimal for prediction in the linear model (Barbieri & Berger, 2004).

A motivation for the 0.5 threshold is that the multiplicity-corrected model prior assumes a mean of 0.5 on the prior inclusion

probabilities and so, a posterior inclusion probability higher (or equal) to 0.5 strengthens the evidence that the variable belongs

in the final model. Heyard and Held (2018) discuss different inclusion thresholds to be used on the PIPs, but we restrict ourselves

to the traditional MPM approach in this article; see the discussion for more details on this topic.

To calculate the quantities (13) and (14) we need to set a prior on the regression coefficients 𝜷𝑗 = (𝜷⊤
𝑗1,… ,𝜷

⊤
𝑗𝑚
)⊤ ∈ ℝ𝑚𝑝 of

all candidate models, with 𝑗 ∈ {1,… , 2𝑝} and 𝜷𝑗 referring to a vector of size 𝑚 ⋅ 𝑝 combining all cause-specific coefficients of

𝑗 . This is a tedious task without subjective prior information. Therefore we follow Held et al. (2015) and use a generalized

𝑔-prior for the regression coefficients 𝜷𝑗 of a particular model 𝑗 ,

𝜷𝑗 | 𝑔,𝑗 ∼ 
(
𝟎, 𝑔 ⋅ −1

𝜷𝑗 ,𝜷𝑗

)
, (15)

where 𝜷𝑗 ,𝜷𝑗 is the Fisher information matrix of the vector 𝜷𝑗 . Due to the properties of the 𝑔-prior, the regression coefficients

are shrunken toward their prior mean using the shrinkage factor 𝑡 = 𝑔∕(𝑔 + 1). To compute the PMP in (13), Held et al. (2015)

use test-based Bayes factors (TBF) (Johnson, 2008; Hu & Johnson, 2009) based on the deviance statistic. Let 𝑧𝑗 be the deviance

statistic of model 𝑗 with 𝑑𝑗 degrees of freedom, then the TBF of model 𝑗 against the reference model 0 can be written

in closed form (Johnson, 2008):

TBF𝑗,0 =
p(𝑧𝑗 |𝑗)
p(𝑧𝑗 |0)

= (𝑔 + 1)−𝑑𝑗∕2 exp
(
𝑔

𝑔 + 1
𝑧𝑗

2

)
. (16)

Consequently, we can rewrite the posterior probability of 𝑗 as

Pr(𝑗 | data) =
TBF𝑗,0 Pr(𝑗)∑

𝑘∈Δ TBF𝑘,0 Pr(𝑗)
.

To estimate the factor 𝑔, we use an empirical Bayes (EB) approach maximizing Equation (16) with respect to 𝑔:

𝑔̂
EB
= max{𝑧𝑗∕𝑑𝑗 − 1, 0}.

Note that the estimated shrinkage factor for model 𝑗 under the EB approach,

𝑡
EB
=

𝑔̂
EB

𝑔̂
EB
+ 1

= max{1 − 𝑑𝑗∕𝑧𝑗, 0},

is the same as the one proposed by Copas (1997) for optimal prediction. There are other methods to estimate 𝑔 (Liang et al.,

2008; Held et al., 2015), we restrict ourselves to the EB approach in this paper though.
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To eventually estimate the coefficients 𝜷𝑗 , the maximum likelihood estimates (MLEs) 𝜷̂
ML

𝑗
of model 𝑗 need to be computed

by maximizing the total log likelihood (see end of Section 3.3). Then, the MLEs as well as the standard errors are shrunken to

obtain the shrunken vector of estimated coefficients (Held et al., 2015, Section 3.1):

𝜷𝑗 | data, 𝑔,𝑗 ∼ 
(
𝑡

EB
⋅ 𝜷̂

ML

𝑗
, 𝑡

EB
⋅ −1

𝜷𝑗 ,𝜷𝑗

)
. (17)

If we consider one particular model 𝑗 with cause-specific regression coefficients 𝜷𝑗 , we can define the standardized shrunken

estimate of a specific component 𝛽𝑖, say, of 𝜷𝑗 :

𝑡
EB
⋅ 𝛽ML

𝑖√
𝑡

EB
⋅ 𝜎2
𝑖

=
√
𝑡

EB
⋅
𝛽ML

𝑖

𝜎𝑖
,

where 𝜎2
𝑖

is the diagonal element of −1
𝜷𝑗 ,𝜷𝑗

corresponding to the coefficient 𝛽𝑖. The analysis by maximum likelihood additionally

provides the deviance statistic with its degrees of freedom that is needed to compute the TBF and to estimate 𝑔 by EB.

Suppose that for our prediction models, we select among 𝑝̄ baseline as well as ̄̄𝑝 time-dependent variables. Further we need to

choose among 𝑙 possible lagged versions of the ̄̄𝑝 time-varying variables. This can cause a large model space (2𝑝̄+𝑙⋅ ̄̄𝑝) and make

the computation of the inclusion probabilities very slow. Hence, we suggest a sequential approach where we first select the lag(s)

for the time-dependent variables and then choose the baseline variables. The decision on the maximum lag length 𝑙 should be

based on clinical knowledge but also on the availability of the data. One option would be to include the whole history of the

variable up to 𝑙 time units in the past but this is not feasible in clinical prediction where we seek parsimonious models. Hence,

specific lags that are relevant for prediction at time 𝑡 should be selected. First we use the TBF-methodology presented above

to compute the 𝑙 ⋅ ̄̄𝑝 inclusion probabilities for each of the lagged variables. The model space has dimension 2𝑙⋅ ̄̄𝑝. The reference

model is the prediction model including the time-dependent intercept selected by the procedure described in Section 4.1 as well

as all possible baseline variables. We include the baseline variables by default to avoid that certain lagged variables are judged

relevant in this first step and are then dropped from the final MPM because some kind of interaction exists with the baseline

variables. The 𝑝lags ≤ 𝑙 ⋅ ̄̄𝑝 selected lags have PIP ≥ 0.5 since we aim for the MPM.

Afterwards, we include the 𝑝̄ potential baseline variables in the selection process and compute the 𝑝̄ + 𝑝lags inclusion proba-

bilities. The reference model is now the null or baseline model including only the time-dependent intercept. Again, we include

the variables having PIP ≥ 0.5 to find the MPM. We recompute the PIPs of the 𝑝lags lagged variables to make their relevance

comparable to the one of the baseline variables. They are most likely included again but their inclusion probability changes since

the considered model space is different.

4.3 Cause-specific variable selection
The posterior inclusion probability in (14) represents the importance of a specific variable for the prediction of all 𝑚 + 1 causes

together. However, as already discussed in Gustafson and Lefebvre (2008), a certain variable might only be relevant for some

events whereas there is no real effect on others. In this case, it might be scientifically more plausible to include this variable only

for certain events, leading to the problem of cause-specific variable selection (CSVS).

First, the estimated cause-specific coefficients of our selected discrete time-to-event competing risks model  are retrieved:

𝛽𝑘𝑟, 𝑘 = 1,… , 𝑝 and 𝑟 = 1,… , 𝑚 with 𝛽𝑘𝑟 ∼  (𝛽𝑘𝑟, 𝜎2), where 𝛽𝑘𝑟 is the ML estimate and 𝜎2 is the corresponding diagonal

element of the inverse Fisher Information −1
𝜷,𝜷

in (15). Then, the Bayes factor (BF) for inclusion against no inclusion of each

cause-specific coefficient is computed. Our null (𝐻0) and alternative (𝐻1) hypotheses are defined as follows:

𝐻0: 𝛽𝑘𝑟 = 0 and𝐻1: 𝛽𝑘𝑟 ∼ 
(
0, 𝑔 ⋅ 𝜎2

)
,

since we use the 𝑔-prior on the regression coefficient as described in Section 4.2.𝐻0 refers to the situation where the coefficient

is set to zero whereas, under 𝐻1, it is included. Under the null hypothesis, the marginal likelihood is normal with mean 0 and

variance 𝜎2; under the alternative, it is normal with mean 0 and variance 𝜎2(1 + 𝑔). So we can derive the BF of the alternative

against the null for each coefficient:

BF10 =
p(𝛽𝑘𝑟 |𝐻1)
p(𝛽𝑘𝑟 |𝐻0)

=

1
𝜎
√
(1+𝑔)

𝜑

(
𝛽𝑘𝑟

𝜎
√
(1+𝑔)

)
1
𝜎
𝜑

(
𝛽𝑘𝑟

𝜎

) = 𝛼 𝜑(𝛼𝑡)
𝜑(𝑡)

,
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with 𝑡 = 𝛽𝑘𝑟∕𝜎 being the standardized coefficient,𝜑(.) denotes the density of the standard normal distribution and 𝛼 = 1∕
√
1 + 𝑔.

Replacing 𝑔 with its EB estimate 𝑔̂
EB

we obtain

BF10 = 𝛼 ⋅ exp
(1
2
(1 − 𝛼2) 𝑡2

)
= 1√

1 + 𝑔̂
EB

exp
(
1
2

𝑔̂
EB

1 + 𝑔̂
EB

𝑡2
)
.

The coefficients with BF10 > 1 are included (𝜷kept), whereas the ones with BF10 ≤ 1 are set to zero (𝜷dropped). This approach

is inspired by the median probability model, where we include a variable only if its posterior inclusion probability exceeds the

prior inclusion probability of 0.5. For the CSVS we only include the coefficients if the marginal likelihood under the alternative

𝐻1 is larger than the marginal likelihood under the null𝐻0.

However, the coefficients 𝜷kept need to be corrected using the conditional posterior distribution given the other coefficients

𝜷dropped are zero. Assuming normality of the posterior of the regression coefficients

𝜷 | data =
(
𝜷kept
𝜷dropped

) | data ∼ 
((

𝜷̂kept
𝜷̂dropped

)
,

(
Σ̂11Σ̂12
Σ̂21Σ̂22

))
,

we have

𝜷kept | data ∼ 
(
𝜷̂kept , Σ̂11

)
and

𝜷dropped | data ∼ 
(
𝜷̂dropped , Σ̂22

)
.

We can correct the retained coefficients:

𝜷kept | (𝜷dropped = 𝟎, data) ∼  (𝐦, 𝐯)

with

𝐦 = 𝜷̂kept − Σ̂12 Σ̂−1
22 𝜷̂dropped

𝐯 = Σ̂11 − Σ̂12 Σ̂−1
22 Σ̂21.

The CSVS method makes our prediction model sparser. However, if we want to predict the cause-specific hazard for a par-

ticular individual for example, we still need the information on the variables relevant for the other causes, see Equation (6). For

the cause-specific odds in Equation (8), on the other hand, we only need the variables that are relevant for the specific cause.

Using these odds, we can compute the risk of moving from state “staying at risk” to event 𝑟, using only the variables included

for outcome 𝑟.

4.4 Landmarking for dynamic variable selection
Baseline variables are potentially important to predict the outcome at the start of observation, but may lose some of their

predictive power after a certain time. Time-dependent variables, on the other hand, are more likely to be relevant over the whole

observation period. In order to investigate the importance of variables over time we apply a landmark approach (Anderson et al.,

1983; van Houwelingen, 2007; van Houwelingen & Putter, 2012) and proceed to dynamic Bayesian variable selection resulting

in dynamic prediction models. Landmarking enables us to predict an event conditional on being at risk until a fixed point in

time, the landmark. The approach used in this paper is similar to the one presented in Held et al. (2016). We first define discrete

landmarks, for example each day of observation. Then, for each landmark we extract the data from the landmark until the end

of observation. This creates as many subsets as there are landmarks defined. In a next step, the posterior inclusion probabilities

are calculated for all potential variables using each landmark-specific data subset. We calculate PIPs for each landmark and

for each variable, which are conditional on the fact that an individual is still at risk at a specific landmark. Now, to predict the

outcome of an individual at a certain time-point, we include only the variables with PIP ≥ 0.5, at that particular landmark. In

this manner, dynamic median probability models are defined; depending on the time point considered for the prediction we may

use different variables. In addition, we apply the cause-specific variable selection procedure introduced in the previous section

on each dynamic MPM. Finally, dynamic cause-specific MPMs are constructed.
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4.5 Prediction
The probability that we are interested in the application is Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡), the risk of an event 𝑟 happening at

𝑡 + 2 given that the patient is still at risk at 𝑡, where 𝐱𝑡 contains all the information used for the prediction that can be baseline

variables as well as time-dependent and even lagged information. This is not exactly a hazard. In fact, with

𝜆𝑟(𝑡 + 2 | 𝐱𝑡) = Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡 + 2, 𝐱𝑡) =

= Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡 + 2, 𝑇 ≥ 𝑡, 𝐱𝑡) =

=
Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟, 𝑇 ≥ 𝑡 + 2 | 𝑇 ≥ 𝑡, 𝐱𝑡)

Pr(𝑇 ≥ 𝑡 + 2 | 𝑇 ≥ 𝑡, 𝐱𝑡)
=

=
Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡)
1 − Pr(𝑇 < 𝑡 + 2 | 𝑇 ≥ 𝑡, 𝐱𝑡)

,

the conditional probability of interest is

Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡) = 𝜆𝑟(𝑡 + 2 | 𝐱𝑡) ⋅ [1 − Pr(𝑇 < 𝑡 + 2 | 𝑇 ≥ 𝑡, 𝐱𝑡)] =

= 𝜆𝑟(𝑡 + 2 | 𝐱𝑡) ⋅ [1 − Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡] +

− Pr(𝑇 = 𝑡 + 1 | 𝑇 ≥ 𝑡, 𝐱𝑡)].

Since, we have also Pr(𝑇 = 𝑡 + 1 | 𝑇 ≥ 𝑡, 𝐱𝑡) = 𝜆(𝑡 + 1 | 𝐱𝑡) ⋅ [1 − Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, x𝑡)], where 𝜆(𝑡 | 𝐱𝑡) = ∑𝑚
𝑟=1 𝜆𝑟(𝑡 | 𝐱𝑡) is the

overall hazard, we obtain

Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡) = 𝜆𝑟(𝑡 + 2 | 𝐱𝑡) ⋅ [1 − Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡) +

− 𝜆(𝑡 + 1 | 𝐱𝑡) ⋅ (1 − Pr(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, 𝐱𝑡))] =

= 𝜆𝑟(𝑡 + 2 | 𝐱𝑡) ⋅ [1 − 𝜆(𝑡 | 𝐱𝑡)] ⋅ [1 − 𝜆(𝑡 + 1 | 𝐱𝑡)]. (18)

To compute the quantity in (18) one option would be to simply ignore 𝐱𝑡 in 𝜆(𝑡 | 𝐱𝑡) and 𝜆(𝑡 + 1 | 𝐱𝑡), and use the life-table

estimator of the overall hazard 𝜆(𝑠) with 𝑠 ∈ {𝑡, 𝑡 + 1}:

𝜆̂(𝑠) =
# of events of any cause at 𝑠

# of events of patients still at risk just prior to 𝑠
.

A second option is to also develop a prediction model for the cause-specific hazards 𝜆𝑟(𝑡 | 𝐱𝑡) and 𝜆𝑟(𝑡 | 𝐱𝑡) and then compute

their overall hazards at 𝑡 and 𝑡 + 1, respectively, or directly find a prediction model for the overall hazards. The simplest way

would be to consider the variables that were selected for 𝜆𝑟(𝑡 + 2 | 𝐱𝑡).
5 APPLICATION ON THE OUTCOMEREA DATA

We apply the proposed methodology to the OUTCOMEREA data for the prediction of the timing of a VAP PA in an intensive

care unit for critically ill patients. Our time units are days, 𝑡 ∈ {1, 2,…}. Here, the number of outcomes is 𝑚 = 4 with levels

{1: death, 2: extubation, 3: VAP noPA , 4: VAP PA} and 𝑟 = 0 is the reference category, staying ventilated.

The probability which we are interested in predicting in this application is Pr(𝑇 = 𝑡 + 2, 𝑅 = 𝑟 | 𝑇 ≥ 𝑡, 𝐱𝑡,𝑡−1,𝑡−2,0), which is

the risk of an event 𝑟 happening at 𝑡 + 2 given that the patient is still at risk at 𝑡, with 𝐱𝑡,𝑡−1,𝑡−2,0 being the information potentially

used for the prediction: baseline as well as time-dependent lagged variables. As discussed in the previous Section 4.5 we will

need to find an optimal prediction model for the hazards 𝜆𝑟(𝑡 + 2 | 𝐱𝑡), 𝜆(𝑡 | 𝐱𝑡) and 𝜆(𝑡 + 1 | 𝐱𝑡). In the following sections, we

will illustrate the model development algorithm for the hazard 𝜆𝑟(𝑡 + 2 | 𝐱𝑡) step by step. To find a prediction model for the

overall hazards 𝜆(𝑡 | 𝐱𝑡) and 𝜆(𝑡 + 1 | 𝐱𝑡) the methods described in Held et al. (2015) and implemented in the glmBfp-package

can be used.
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F I G U R E 1 Cumulative baseline hazard estimated for the first 100 days under ventilation and for the four outcomes; depending on the

definition of the time-dependency of the baseline hazard. They are compared to the Nelson–Aalen estimator of the cumulative hazard

5.1 Baseline hazard selection
There are numerous ways to account for the time-dependency of the intercept, the baseline hazard 𝛽0𝑡𝑟, in Equation (6). We will

however restrict ourselves to the following options:

A: treat the day of ventilation as a linear variable: 𝛽0𝑡𝑟 = 𝛽0𝑟 + 𝛽1𝑟𝑡,
B: treat the day of ventilation as a factor variable until a certain time has passed, here, for example, 28 days: 𝛽0𝑡𝑟 = 𝛽0𝑟 +
𝛽1𝑟𝟙[𝑡=1] +⋯ + 𝛽28𝑟𝟙[𝑡=28] + 𝛽𝑡>28 𝑟 𝟙[𝑡>28],

C: use natural cubic splines to model the time-dependency of the hazard: 𝛽0𝑡𝑟 =
∑𝐾
𝑣=1 𝛽0𝑣𝑟𝑁𝑣(𝑡), where 𝑁𝑣 are natural cubic

spline basis functions and 𝐾 is the total number of knots. We chose the knots at the 50%, 75%, and 90% quantile of the

length of the observation period {9, 15, 23}.

Figure 1 shows the cumulative hazard estimated by the Nelson–Aalen estimator and using the above baseline hazard for each

outcome individually for the first 100 days at risk. Approach B, does not mimic the Nelson-Aalen estimator well once the 28

first days passed. The cause-specific cumulative hazard is systematically overestimated in the later ventilation period. Approach

B works sufficiently good for extubation, death, and VAP noPA, but not for our event of interest VAP PA. The spline approach

C performs well for all outcomes, so that we choose to model the baseline hazard using a spline with three knots. Of course,

there are numerous other ways to define the baseline hazard, for example, a different intercept for each possible time point. This

is however not feasible in this application, because the model would be overfitted and the computation would be slowed down.

5.2 Variable selection
Since we want to select among all baseline variables as well as time-dependent lagged variables in Table 2, the model space will

be large; 28+3⋅6 models need to be fitted. As discussed before we consider to lag the time-dependent variables by one and two

days but also consider their daily value (at the day of prediction) and opted for a sequential variable selection approach.
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F I G U R E 2 (A) The posterior inclusion probabilities for the different lags (𝑡 − 2, 𝑡 − 1, 𝑡) of the six time-dependent variables. (B) The posterior

inclusion probabilities for the eight baseline variables (in white) and the seven previously selected lagged variables (in black). The inclusion

threshold of 0.5 is used for the median probability model

First, we select the lag for all time-dependent variables simultaneously. The reference model includes all baseline variables

in Table 2 and the time-dependent intercept selected before. Then the selection is among the six time-dependent variables with

three different lags (𝑡 − 2, 𝑡 − 1, 𝑡) resulting in 3 ⋅ 6 = 18 inclusion probabilities (see Figure 2A, which shows the PIPs for the

different lagged daily variables). Using the MPM inclusion threshold of 0.5, we select lags of zero and two days for 𝑥11, a lag of

one day for 𝑥9 and versions without time lag for 𝑥10, 𝑥12, 𝑥13, and 𝑥14. The fact that we select two specifications for the SOFA

score (𝑥11) will be discussed later.

Next, we select the baseline variables. The reference model contains only the chosen baseline hazard. We recompute the PIPs

of the time-dependent variables to be able to compare their relevance to the baseline variables' importance. Figure 2B shows

the PIPs of the eight baseline variables (in white) as well as the PIPs of the seven time-dependent lagged variables (in black)

that have been retained in the previous step. Our median probability model contains ten predictors. The seven lagged variables

remain in the MPM; their PIPs even increased compared to the ones in Figure 2A. Of course, the sequential steps can be reversed.

However, first choosing the lags seemed more natural here. The fact that the baseline variables were added in the reference model

for the lag selection step ensures that the order of the sequential steps does not change the final results.

Figure 3 shows how the standardized shrunken coefficients evolve if we include one variable after the other in increasing

order of their inclusion probabilities until we reach the MPM with ten predictors. Each plot represents one outcome. Interesting

is the evolution of the coefficients of 𝑥11(𝑡) and 𝑥11(𝑡−2). For each cause, they evolve in opposite directions, meaning that if one

of them has a positive effect the other one has a negative impact on the outcome. A possible reason could be that it is actually

the trend in the evolution of the SOFA score over time that is important and the difference of 𝑥11(𝑡) and 𝑥11(𝑡−2) should be used
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F I G U R E 3 The paths of the shrunken standardized cause-specific coefficients depending on the number of variables in the model for each of

the outcomes individually. The variables are added one by one in an order determined by their posterior inclusion probabilities. The most complex

model here is the MPM including the ten most relevant variables. The dashed lines are at −1.96 and 1.96 to visually inspect significance of the

coefficients at the conventional 5% level

to further simplify the model. However, this implies that we ignore the information of the initial value of the SOFA score. We

decided that keeping both scores, at day 𝑡 and with a two days lag, yields more information than their difference.

5.2.1 Cause-specific variable selection
Since some variables may be, for example, relevant for the outcome death while they do not directly effect outcome VAP PA, we

proceed to CSVS as described in Section 4.3. Figure 4 shows the absolute values of the standardized shrunken coefficients of the

median probability model determined in the previous sections before and after CSVS. From the lower panel of the figure we can

read off, for example, that the predictor 𝑥1, the admission type, which was considered relevant for prediction with an inclusion

probability of 0.77, is actually only important for the outcomes “dead” and “extubated” while our methodology suggests to set its

cause-specific coefficients to zero for causes “VAP PA” and “VAP noPA.” On the other hand, the gender of the patient, 𝑥2, does

not seem to have an important impact on the causes “dead” and “extubated” but changes the risk of acquiring a VAP caused by

any pathogen. The variable 𝑥5, sepsis at admission, is relevant for all outcomes. To be highlighted is the fact that the SOFA score

𝑥11 of day 𝑡 is only relevant for the upper two outcomes while 𝑥11(𝑡−2) influences all outcomes apart from “extubated.” 𝑥14(𝑡),

which tells us whether a patient is infected by or carries resistant PA at the day of prediction, is only important for outcome “VAP

PA.” We refer to Figure 4 of the Supplementary Material for the same figure with printed values of the standardized coefficients.

All of the remaining and corrected coefficients have standardized values larger than 1.96 that indicate their significance at the

conventional 5% level. A variable that has been identified as a strong predictor for one outcome and not the others still influence

the cause-specific hazards of the remaining outcomes, but not their log-odds (see Equation (8)). Moreover, knowing which

variables have a direct effect on the different outcomes can permit more precise interventions.
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F I G U R E 4 Absolute values of the shrunken standardized coefficients of the median probability model before and after cause-specific variable

selection (CSVS)

5.2.2 Dynamic cause-specific variable selection
In this last part, we reapply the proposed variable selection steps on landmark-specific data subsets as described in Section 4.4.

The considered landmarks are the days of ventilation. Starting with day 5 as a first landmark, we drop past information and

consider only data from landmark onward. Thus, the considered data sets are getting smaller as the landmark increases. We will

only present the results up to landmark 14 to ensure their stability. Most of the events occur in the four first weeks since start of

ventilation, see Figure 2 in the Supplementary Material. Considering only two weeks for the dynamic prediction models assures

that we do not run into (quasi-) complete separation problems (Heinze & Schemper, 2002). We need however to be careful

with the baseline hazard which we model as a natural cubic spline with knots at day nine, 15 and 23. This time-specification

is practicable until landmark nine, afterwards it does not work anymore. Therefore we decide to still use a natural cubic spline

with three knots as baseline hazard but leave the placement of the knots undefined.

Figure 5 shows the PIPs for the six time-dependent variables with their potential lags for each landmark. For the binary daily

variable 𝑥9, hemodialysis, we select a lag of one day for the first two landmarks as well as for landmark 11 and 12. At other

points in time, the information whether hemodialysis was conducted on a patient is not relevant. No lag is used on 𝑥10, presence

of a catheter, at the beginning of the ventilation period, while it is better to use a lag of two days once ten days were spent

ventilated. For 𝑥11, the SOFA score, we use no lag and a two day lag for the two first landmarks while the two day lag is judged

most important afterwards. The information at day of prediction 𝑡 is assessed to be best for 𝑥12, use of antibiotics, and 𝑥13, DNR.

The colonization or infection with a resistant PA, 𝑥14, is an irrelevant variable after seven days of ventilation. At each landmark,

we select the lags with PIP ≥ 0.5 in Figure 5 and add the baseline variables from Table 2 to the selection procedure. Figure 6

shows the PIPs of the baseline variables as well as the recalculated PIPs of the lagged variables as selected before, for each

landmark. One can easily see that the baseline variables (blank circles) are either irrelevant right from the start of ventilation,

like 𝑥3, the baseline SAPS II score, or they lose their predictive power quite quickly (apart from 𝑥5, sepsis at admission). The

PIPs of the time-dependent lagged variables (filled circles) did not change much compared to the ones in Figure 5. For some of

them the PIP is missing at particular landmarks because they were not computed due to an inclusion probability smaller than
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F I G U R E 5 Posterior inclusion probabilities for the lagged time-dependent variables for each daily variable at each landmark. The inclusion

threshold is set to 0.5

0.5 in the first step. To obtain dynamic median probability models we select the variables with PIP ≥ 0.5 at each landmark.

Figure 7 represents these dynamic MPMs after we applied the cause-specific variable selection methodology for each landmark:

the shrunken coefficients are dependent on the days since start of ventilation, meaning the landmarks. At a fixed landmark they

are set to zero if their variable's inclusion probability in Figure 6 is smaller than 0.5. The CSVS methodology is applied on each

landmark-specific MPM. We refer to Figure 3 of the Supplementary Material for a representation of the same dynamic MPMs

before cause-specific variable selection. Table 3 summarizes which coefficient of which variables are finally selected to compute

the cause-specific odds defined in Equation (8) at different landmarks.

6 DISCUSSION

In this article, we presented an efficient approach to define dynamic prediction models for discrete-time competing risks data.

We first extended methodology for objective Bayesian variable selection based on TBFs to discrete time-to-event models with

competing risks. Then we applied the methodology to landmark-specific datasets in order to obtain dynamic median probability

models. In a last step, we proceeded to cause-specific variable selection by updating the coefficients of the dynamic MPMs

depending on the importance of the variables on each outcome individually. Using this approach we were able to define simple,
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F I G U R E 6 Posterior inclusion probabilities for the different baseline variables (blank circles) at each landmark and for the time-dependent

lagged variables (filled circles) at each landmark for which the lagged variable was selected in the previous step

parsimonious prediction models for the risk of a VAP PA diagnosis on each day of ventilation taking the competing events,

“VAP noPA,” “dead,” and “extubation,” into account. To predict the odds of a specific outcome we only use the predictors

judged relevant for that particular cause. The proposed method enables us to choose the best lag that should be used for a time-

dependent variable. This issue has not been sufficiently discussed before; lags were mostly chosen based on clinical knowledge.

In our application time-dependent lagged variables were identified as particularly important for prediction. From eight baseline

variables only three remained in the final model whereas all the time-varying variables were included with different lags at

least for early landmarks. We consider our approach easy, comprehensible and reproducible, leading to relatively parsimonious

dynamic prediction models in a complicated clinical setting. Furthermore, the methods discussed here induce optimal shrinkage

that improves the predictions.

Once a prediction model has been developed, its prediction performance has to be assessed (Steyerberg, 2009). This step is

outside the scope of this paper but the methods that will be used in future work to validate the models developed in the previous

sections are discussed here. In order to assess the ability of the prediction model to discriminate between patients experiencing

specific events, cause-specific time-dependent area under the receiver operating characteristic curve (AUC) can be computed.

The AUC defined by Blanche, Dartigues, and Jacqmin-Gadda (2013) for the continuous setting can easily be extended to the

discrete framework. Moreover, to know how well the observed outcomes and the predictions agree, cause-specific calibration
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F I G U R E 7 Shrunken cause-specific regression coefficients of the dynamic median probability models after dynamic variable selection via

landmarking and cause-specific variable selection for all the variables with coefficients not always equal to zero. If the inclusion probability is

smaller than the 0.5 threshold, the variable is excluded and the coefficient is set to zero

slopes can be obtained (Van Hoorde et al., 2014). This approach can be used for our class of models by adjusting for the

time-dependency of the intercept. Finally, to summarize calibration and discrimination, proper scoring rules can be very useful

to assess and compare the performance of different prediction models. Here, the Brier score, also referred to as prediction

error, is the most commonly used score in survival analysis with one or more outcomes (Gerds & Schumacher, 2006; Schoop,

Beyersmann, Schumacher, & Binder, 2011). Again these methods can be extended to the discrete-time setting.

For our dynamic prediction models we always considered the MPM in which variables are included if their PIP was higher

or equal than the threshold 0.5. Heyard and Held (2018) propose a generalization of the MPM, the quantile probability model

in which the inclusion threshold (0.5 for the MPM) is not predefined but selected such that the final model minimizes a certain

model selection criterion; for example the deviance information criterion. However, this approach slows down the computation

considerably in the dynamic setting of this paper such that we do not use it here.

Our methodology is directly extendable to discrete multistate model. Steele, Goldstein, and Browne (2004) define the tran-

sition hazards that are of interest in this model class very similar to the cause-specific hazards modeled in a competing risks

scenario. The discrete transition hazard can be reduced to the probability of an individual moving to a specific state of interest

at a fixed time point given that the individual is in an other state just prior to the fixed time point.

The methodology is not directly applicable for a large number of potential covariates 𝑝, since computation time of the inclusion

probabilities would become prohibitive. Another limitation of the method is that we may run into (quasi-) complete separation
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T A B L E 3 The variables included for the calculation of the cause-specific odds of each outcome at each landmark

Outcome Landmark Variables
VAP PA 5 𝑥2 + 𝑥5 + 𝑥12(𝑡) + 𝑥14(𝑡)

6 𝑥1 + 𝑥2 + 𝑥5 + 𝑥12(𝑡) + 𝑥14(𝑡)
7 𝑥5 + 𝑥12(𝑡)
8 𝑥5 + 𝑥12(𝑡)
9 𝑥5 + 𝑥12(𝑡)

10 𝑥5 + 𝑥8 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
11 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
12 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
13 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
14 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)

VAP noPA 5 𝑥2 + 𝑥5 + 𝑥12(𝑡)
6 𝑥2 + 𝑥5 + 𝑥12(𝑡)
7 𝑥5 + 𝑥12(𝑡)
8 𝑥5 + 𝑥12(𝑡)
9 𝑥5 + 𝑥12(𝑡)

10 𝑥5 + 𝑥8 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
11 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
12 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
13 𝑥5 + 𝑥10(𝑡−2) + 𝑥12(𝑡)
14 𝑥5 + 𝑥12(𝑡)

dead 5 𝑥1 + 𝑥5 + 𝑥9(𝑡−1) + 𝑥11(𝑡) + 𝑥11(𝑡−2) + 𝑥12(𝑡) + 𝑥13(𝑡)
6 𝑥1 + 𝑥5 + 𝑥9(𝑡−1) + 𝑥11(𝑡) + 𝑥11(𝑡−2) + 𝑥12(𝑡) + 𝑥13(𝑡)
7 𝑥5 + 𝑥11(𝑡) + 𝑥13(𝑡)
8 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡) + 𝑥13(𝑡)
9 𝑥5 + 𝑥11(𝑡) + 𝑥13(𝑡)

10 𝑥5 + 𝑥8 + 𝑥10(𝑡−2) + 𝑥11(𝑡) + 𝑥13(𝑡)
11 𝑥5 + 𝑥9(𝑡−1) + 𝑥10(𝑡−2) + 𝑥11(𝑡) + 𝑥13(𝑡)
12 𝑥5 + 𝑥9(𝑡−1) + 𝑥10(𝑡−2) + 𝑥11(𝑡) + 𝑥12(𝑡) + 𝑥13(𝑡)
13 𝑥5 + 𝑥10(𝑡−2) + 𝑥11(𝑡) + 𝑥13(𝑡)
14 𝑥5 + 𝑥10(𝑡−2) + 𝑥11(𝑡) + 𝑥13(𝑡)

extubated 5 𝑥1 + 𝑥5 + 𝑥10(𝑡) + 𝑥11(𝑡) + 𝑥11(𝑡−2)
6 𝑥1 + 𝑥5 + 𝑥10(𝑡) + 𝑥11(𝑡) + 𝑥11(𝑡−2)
7 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)
8 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)
9 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)

10 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)
11 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)
12 𝑥5 + 𝑥11(𝑡) + 𝑥12(𝑡)
13 𝑥11(𝑡) + 𝑥12(𝑡) + 𝑥13(𝑡)
14 𝑥11(𝑡)

problems (Heinze & Schemper, 2002). In our application most of the events occur during the two to three first weeks. Setting

a spline (with tree knots) on the day of ventilation partly resolves this potential problem since we take the timing of the events

into account as we do not estimate baseline hazards at distinct days, but for a sequence of days. However, with the landmarking

approach the problem of separation reoccurs because there are only few data left at higher landmarks.
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